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� RF phenomenology modeling
• overview of the Splatter, Clutter, and Target Signal (SCATS) model
• ground scatter modeling
• comparison to experimental data

� Other effects
• internal clutter motion (ICM)
• ground traffic
• discrete scatterers
• array calibration

� Heterogeneous clutter example
• effects of heterogeneous terrain
• effects of ICM
• effects of ground traffic

� Overview of KASSPER-02 Workshop data set
� Summary
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Splatter, Clutter, and Target Signal Model

� The model provides 
characterization of:

• target return
• direct path signal
• ground scattered signal 

(clutter for radar)
• direct path signal from 

interferer
• ground scattered 

interference signal (hot 
clutter, splatter, or terrain-
scattered interference)

� Developed under a number of DARPA, Army, Navy,     
and Air force programs since 1989

� Provides characterization of complex RF environments
� Uses include system analysis, test planning, signal 

processing algorithm development
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Ground Scatter Modeling

� Transmit and receive locations 
defined, along with an area of 
calculation

� Area of calculation is divided into 
a grid of user defined cell sizes

� Propagation to each cell is 
calculated used DTED-based 
terrain profiles and SEKE

� Power received per unit area 
from each cell calculated by 
using radar equation

� Provides signal strength, path 
range, path Doppler, and AoA for 
each scattering patch

� Other effects (e.g. ICM, discretes, 
ground traffic) may be added
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Scattering Coefficient

� Constant scattering coefficient 

� “Monostatic equivalent” model
• use measured monostatic data from Radar Cross Section Handbook
• apply bistatic equivalence theorem by choosing scattering coefficient as a 

function of the angle between terrain local normal and the bistatic bisector 
of the incident and scattered rays

� Two-scale composite models
• two scale of roughness model
• polarization dependent
• based on surface roughness parameters
• modified version from RCS Handbook using Phillips height spectrum rather 

than Gaussian 
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Polarimetric (Composite) Models

� Polarized fields from a (tilted) dipole
• find polarization vector
• resolve into horizontal (TE) and vertical (TM) components
• calculate gain for each component

� Convert to coordinates of plane tangent to the local terrain
� Calculate scattering coefficient σσσσ0 for each component (HH, HV, 

VH, VV)
� Calculate received power for each component
� Combine components incoherently
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Two Scale Composite Models

� Two scales of roughness model
• large scale, physical optics (‘quasi-specular’) contribution
• small scale, perturbation (‘Bragg-scatter’) contribution

� Polarization dependent
• function of incident and scattered polarization (HH,HV,VH,VV)
• rough surface scattering has strong polarization dependence

� Based on surface roughness parameters
• large scale heights, correlation lengths and/or slopes
• small scale heights, correlation lengths and/or slopes

� Height spectrum - Gaussian (RCS HB) vs. Phillips
• statistical representation of surface roughness
• impacts parameter selection
• Phillips height spectrum primarily used in SCATS
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Mountain Top Monostatic ClutterMountain Top Monostatic Clutter

� Simulated clutter maps using ‘bald earth’ and DTED shown
� Radar parameters match Mountaintop IDPCA65v1 data
� Significant differences observed between bald earth and DTED 

simulations

x distance (km) −> (longitude)

y 
d

is
ta

n
ce

 (
km

) 
−>

 (
la

ti
tu

d
e)

04−Jan−2001

Rx

(31.96°,108.5°)

(35.55° N, 104.3° W)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

p
o

w
er

/m
2  (

d
B

W
)

      1437 m, (0 m)
Tx: 33.75° N, 106.4° W

      1437 m, (0 m)
Rx: 33.75° N, 106.4° W

Frequency: 432 Mhz
RMSslope: 0.33302
PhillipsCoeff: 0.0106

CellNS: 500m
CellEW: 500m

−500

−450

−400

−350

−300

−250

−200

x distance (km) −> (longitude)

y 
d

is
ta

n
ce

 (
km

) 
−>

 (
la

ti
tu

d
e)

04−Jan−2001

Rx

(31.96°,108.5°)

(35.55° N, 104.3° W)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

p
o

w
er

/m
2  (

d
B

W
)

      26 m, (2411 m)
Tx: 33.75° N, 106.4° W

      26 m, (2411 m)
Rx: 33.75° N, 106.4° W

Frequency: 432 Mhz
RMSslope: 0.33302
PhillipsCoeff: 0.0106

CellNS: 500m
CellEW: 500m

−500

−450

−400

−350

−300

−250

−200

bald earth DTED



Information Systems 
Laboratories, Inc.

An emerging technology in radar signal processing An emerging technology in radar signal processing DARPA and AFRLDARPA and AFRL

KASSPER-02 – 04/02 - 9

Doppler (Hz)

ra
ng

e 
bi

n

RSTER data

−200 0 200

100

200

300

400

500

600

Doppler (Hz)

SCATS data

−200 0 200

100

200

300

400

500

600

Doppler (Hz)

bald earth

−200 0 200

100

200

300

400

500

600

relative power (dB)
0 10 20 30 40 50 60 70

Mountain Top Monostatic Clutter (cont.)Mountain Top Monostatic Clutter (cont.)

� Range-Doppler 
clutter maps shown 
for RSTER and 
SCATS simulations

� SCATS results 
shown both with 
and without DTED

� SCATS w/ DTED 
results in a 
significantly better 
match to the 
experimental data

� SCATS captures a 
majority of the 
clutter features

Information Systems 
Laboratories, Inc.
Information Systems 
Laboratories, Inc.
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Mountain Top Bistatic ScatterMountain Top Bistatic Scatter

� Comparison of delay 
spread for RSTER 
(Mountain Top) data 
and SCATS

� Power relative to direct 
path power plotted

Information Systems 
Laboratories, Inc.
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� RF phenomenology modeling
• overview of the Splatter, Clutter, and Target Signal (SCATS) model
• ground scatter modeling
• comparison to experimental data

� Other effects
• internal clutter motion (ICM)
• ground traffic
• discrete scatterers
• array calibration

� Heterogeneous clutter example
• effects of heterogeneous terrain
• effects of ICM
• effects of ground traffic

� Overview of KASSPER-02 Workshop data set
� Summary
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Internal Clutter Motion Model

� Billingsley empirical model has DC 
term plus an AC (noise) component:

� DC/AC ratio r is found from:

� Correlation (covariance matrix taper 
or CMT) function becomes:
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Clutter DiscretesClutter Discretes

� Can produce under-nulled clutter due to training methods
� Discrete density is a function of population centers
� Closer to population centers => greater probability of a 

discrete
� Larger RCS discretes closer to population centers
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Ground Traffic ModelGround Traffic Model

� Road data extracted from Census Bureau TIGER/Line 
database

� Ground traffic placed along the road segments using an 
exponential distribution to achieve a Poisson traffic arrival 
distribution 

� Latitude and longitude calculated for each vehicle - two 
sets of vehicle positions per segment (opposing lane 
assumed)

� Traffic clutters can be placed as desired
� Representative example distribution of ground traffic:

RayleighRayleighRCS fading model
15 dBsm5 dBsmAvg RCS
50 mph50 mphSpeed on US Hwy
60 mph60 mphSpeed on Interstate
50 m50 mAvg spacing
20 %80 %% of total traffic

TrucksCars

RayleighRayleighRCS fading model
dBsmdBsmAvg RCS

50 mphSpeed on US Hwy
60 mph60 mphSpeed on Interstate
50 m50 mAvg spacing
20 %80 %% of total traffic

TrucksCars



Information Systems 
Laboratories, Inc.

An emerging technology in radar signal processing An emerging technology in radar signal processing DARPA and AFRLDARPA and AFRL

KASSPER-02 – 04/02 - 15

Array Calibration 
Errors/Channel Mismatch
Array Calibration 
Errors/Channel Mismatch
� Angle-independent channel complex gain errors

• gain and phase errors on each channel due to errors in line lengths, 
receiver gain, etc.

• manifests as rank-one CMT on (total) signal covariance
• alternately may view as full rank (orthonormal if phase only) 

transformation of the array data
� Angle-dependent array manifold errors

• results from
- element position errors
- mutual coupling
- element/super element pattern errors

• manifests as separate, angle-dependent rank-one CMT on each 
signal incident on the array

� Channel mismatch
• channel mismatch across the element/receiver band reduces ability 

to cancel clutter (i.e., varying channel transfer functions)
• rank of CMT on total signal covariance > 1
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Simulation of Calibration 
Errors/Channel  Mismatch
Simulation of Calibration 
Errors/Channel  Mismatch

� Angle-independent calibration errors
• complex gain errors (i.e., amplitude and phase)
• results from line length variations, receiver characteristic variations, etc.

� Angle-dependent calibration errors
• modeled by element position errors on each subarray
• element position errors consistent with ~35 dB achievable sidelobes 

(Taylor weighting) 
• element position errors independent from subarray to subarray (each 

subarray has a different gain pattern)
� Channel mismatch

• transfer function mismatch channel to channel
• implementation more complex – to be included in later data sets
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Future Simulation FeaturesFuture Simulation Features

� More extensive use of land use and land cover data (LULC)

� Improved propagation models for SBR

� Bandwidth effects – decorrelation across array face

� Realistic target and ground traffic RCS (probability distribution) 
based on models or measurements

� EM model-based subarray and channel calibration errors

� Channel transfer function mismatch
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OutlineOutline

� RF phenomenology modeling
• overview of the Splatter, Clutter, and Target Signal (SCATS) model
• ground scatter modeling
• comparison to experimental data

� Other effects
• internal clutter motion (ICM)
• ground traffic
• discrete scatterers
• array calibration

� Heterogeneous clutter example
• effects of heterogeneous terrain
• effects of ICM
• effects of ground traffic

� Overview of KASSPER-02 Workshop data set
� Summary
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Site-Specific Terrain EffectsSite-Specific Terrain Effects

� X-band LEO space-based radar example
• 770 km altitude
• speed of 7 km/s 

� Comparison of bald earth and terrain-specific clutter
� Grazing angle of ~15°

Bald Earth Terrain-Specific

An emerging technology in radar signal processing An emerging technology in radar signal processing DARPA and AFRLDARPA and AFRL
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Site-Specific Terrain Effects (cont.)Site-Specific Terrain Effects (cont.)

� Power versus range shown for a full aperture beam
� Hamming pattern
� Significant Clutter amplitude variations
� Grazing angle ~15°
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Heterogeneous Terrain Impact on SINR Heterogeneous Terrain Impact on SINR 

� DoFs: 10 
pulses, 5 
beams

� 100 training 
bins

� 10 dB diagonal 
loading

� 15 m x 2.5 m 
aperture

� Grazing angle 
~15°

� Terrain effects 
result in under-
nulled clutter
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Ground Traffic Effects ExampleGround Traffic Effects Example

� ~45° grazing 
angle example -
no ground 
traffic

� Space-based 
radar

� DoFs: 10 
pulses, 5 beams

� 100 training 
bins

� 10 dB diagonal 
loading
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Ground Traffic Effects Example (cont.)Ground Traffic Effects Example (cont.)

� ~45° grazing 
angle example -
ground traffic 
included

� Space-based 
radar

� DoFs: 10 pulses, 
5 beams

� 100 training bins
� 10 dB diagonal 

loading
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OutlineOutline

� RF phenomenology modeling
• overview of the Splatter, Clutter, and Target Signal (SCATS) model
• ground scatter modeling
• comparison to experimental data

� Other effects
• internal clutter motion (ICM)
• ground traffic
• discrete scatterers
• array calibration

� Heterogeneous clutter example
• effects of heterogeneous terrain
• effects of ICM
• effects of ground traffic

� Overview of KASSPER-02 Workshop data set
� Summary
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Range Swath and Steering DirectionRange Swath and Steering Direction

� Scatter map for 
simulation 

� Overlays:
• range contours 

for 35 and 50 
km shown

� Azimuth 
contours of main 
beam shown

� Steering 
direction is 195°

� Heading is 270°
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Parmeter Value 
RF frequency 1240 MHz 

Bandwidth 10 MHz 
PRF 1984 Hz 

Peak Power 15 kW 
Duty factor 10% 
Noise figure 5 dB 

System losses 9 dB 
Platform speed 100 m/s 
Platform altitude 3 km 

Transmit aperture 8 vertical x 11 horizontal 
Receive aperture* 8 vertical x 1 horizontal 

Horizontal antenna spacing 10.9 cm 
Vertical antenna spacing 14.07 cm 

Number of receive sub-apertures 11  
Front-to-back ratio 25 dB 

 

Simulation ParametersSimulation Parameters

*each channel – 11 channels total
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Simulation Antenna ArraySimulation Antenna Array

� 11 x 8 element array 
(similar to MCARM)

� Columns of elements 
combined into single 
subarray/superelement

� Each column pre-
steered to –5° elevation

� Array steered to 195° 
azimuth on transmite

� Calibration errors 
introduced to produce 
overall sidelobe level of 
approximately 35 dB in 
azimuth and elevation

.  .  .

1 2 3 11

subarray
‘stick’

.  .  .
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OutlineOutline

� RF phenomenology modeling
• overview of the Splatter, Clutter, and Target Signal (SCATS) model
• ground scatter modeling
• comparison to experimental data

� Other effects
• internal clutter motion (ICM)
• ground traffic
• discrete scatterers
• array calibration

� Heterogeneous clutter example
• effects of heterogeneous terrain
• effects of ICM
• effects of ground traffic

� Overview of KASSPER-02 Workshop data set
� Summary
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SummarySummary

� High fidelity radar simulations
• real-world effects: heterogeneous terrain, ground traffic, targets, ICM, 

sensor calibration errors
• heterogeneous clutter data set with ground traffic 

� Future data sets
• more extensive use of land use and land cover data (LULC)
• bandwidth effects – decorrelation across array face
• realistic target and ground traffic RCS (probability distribution) based on 

models or measurements
• EM model-based subarray and channel calibration errors
• channel transfer function mismatch
• improved propagation models for SBR
• space-based radar


